Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            The below-ground growing season often extends beyond the above-ground growing season in tundra ecosystems. However, we do not yet know where and when this occurs and whether these phenological asynchronies are driven by variation in local vegetation communities or by spatial variation in microclimate. Here, we combined above- and below-ground plant phenology metrics to compare the relative timings and magnitudes of leaf and root growth and senescence across microclimates and plant communities at five sites across the tundra biome. We observed asynchronous growth between above-ground and below-ground plant tissue, with the below-ground season extending up to 74% beyond the onset of above-ground leaf senescence. Plant community type, rather than microclimate, was a key factor controlling the timing, productivity and growth rates of roots, with graminoid roots exhibiting a distinct ‘pulse’ of growth later into the growing season than shrub roots. Our findings indicate the potential of vegetation change to influence below-ground carbon storage as roots remain active in unfrozen soils for longer as the climate warms. Taken together, increased root growth in soils that remain thawed later into the growing season, in combination with ongoing tundra vegetation change including increased shrubs and graminoids, can act together to alter below-ground productivity and carbon cycling in the tundra biome.more » « less
- 
            The International Tundra Experiment (ITEX) was founded in 1990 as a network of scientists studying responses of tundra ecosystems to ambient and experimental climate change at Arctic and alpine sites across the globe. Common measurement and experimental design protocols have facilitated synthesis of results across sites to gain biome-wide insights of climate change impacts on tundra. This special issue presents results from more than 30 years of ITEX research. The importance of snow regimes, bryophytes, and herbivory are highlighted, with new protocols and studies proposed. The increasing frequency and magnitude of extreme climate events is shown to have strong effects on plant reproduction. The most consistent plant trait response across sites is an increase in vegetation height, especially for shrubs. This will affect surface energy balance, carbon and nutrient dynamics and trophic level interactions. Common garden studies show adaptation responses in tundra species to climate change but they are species and regionally specific. Recommendations are made including establishing sites near northern communities to increase reciprocal engagement with local knowledge holders and establishing multi-factor experiments. The success of ITEX is based on collegial cooperation among researchers and the network remains focused on documenting and understanding impacts of environmental change on tundra ecosystems.more » « less
- 
            Open top chambers (OTCs) were adopted as the recommended warming mechanism by the International Tundra Experiment (ITEX) network in the early 1990’s. Since then, OTCs have been deployed across the globe. Hundreds of papers have reported the impacts of OTCs on the abiotic environment and the biota. Here we review the impacts of the OTC on the physical environment, with comments on the appropriateness of using OTCs to characterize the response of biota to warming. The purpose of this review is to guide readers to previously published work and to provide recommendations for continued use of OTCs to understand the implications of warming on low stature ecosystems. In short, the OTC is a useful tool to experimentally manipulate temperature, however the characteristics and magnitude of warming varies greatly in different environments, therefore it is important to document chamber performance to maximize the interpretation of biotic response. When coupled with long-term monitoring, warming experiments are a valuable means to understand the impacts of climate change on natural ecosystems.more » « less
- 
            ABSTRACT The below‐ground growing season often extends beyond the above‐ground growing season in tundra ecosystems and as the climate warms, shifts in growing seasons are expected. However, we do not yet know to what extent, when and where asynchrony in above‐ and below‐ground phenology occurs and whether variation is driven by local vegetation communities or spatial variation in microclimate. Here, we combined above‐ and below‐ground plant phenology metrics to compare the relative timings and magnitudes of leaf and fine‐root growth and senescence across microclimates and plant communities at five sites across the Arctic and alpine tundra biome. We observed asynchronous growth between above‐ and below‐ground plant tissue, with the below‐ground season extending up to 74% (~56 days) beyond the onset of above‐ground leaf senescence. Plant community type, rather than microclimate, was a key factor controlling the timing, productivity, and growth rates of fine roots, with graminoid roots exhibiting a distinct ‘pulse’ of growth later into the growing season than shrub roots. Our findings indicate the potential of vegetation change to influence below‐ground carbon storage as the climate warms and roots remain active in unfrozen soils for longer. Taken together, our findings of increased root growth in soils that remain thawed later into the growing season, in combination with ongoing tundra vegetation change including increased shrub and graminoid abundance, indicate increased below‐ground productivity and altered carbon cycling in the tundra biome.more » « less
- 
            Snow is an important driver of ecosystem processes in cold biomes. Snow accumulation determines ground temperature, light conditions, and moisture availability during winter. It also affects the growing season’s start and end, and plant access to moisture and nutrients. Here, we review the current knowledge of the snow cover’s role for vegetation, plant-animal interactions, permafrost conditions, microbial processes, and biogeochemical cycling. We also compare studies of natural snow gradients with snow experimental manipulation studies to assess time scale difference of these approaches. The number of tundra snow studies has increased considerably in recent years, yet we still lack a comprehensive overview of how altered snow conditions will affect these ecosystems. Specifically, we found a mismatch in the timing of snowmelt when comparing studies of natural snow gradients with snow manipulations. We found that snowmelt timing achieved by snow addition and snow removal manipulations (average 7.9 days advance and 5.5 days delay, respectively) were substantially lower than the temporal variation over natural spatial gradients within a given year (mean range 56 days) or among years (mean range 32 days). Differences between snow study approaches need to be accounted for when projecting snow dynamics and their impact on ecosystems in future climates.more » « less
- 
            Abstract AimArctic plants survived the Pleistocene glaciations in unglaciated refugia. The number, ages, and locations of these refugia are often unclear. We use high‐resolution genomic data from present‐day and Little‐Ice‐Age populations of Arctic Bell‐Heather to re‐evaluate the biogeography of this species and determine whether it had multiple independent refugia or a single refugium in Beringia. LocationCircumpolar Arctic and Coastal British Columbia (BC) alpine. TaxonCassiope tetragonaL., subspeciessaximontanaandtetragona, outgroupC. mertensiana(Ericaceae). MethodsWe built genotyping‐by‐sequencing (GBS) libraries usingCassiope tetragonatissue from 36 Arctic locations, including two ~250‐ to 500‐year‐old populations collected under glacial ice on Ellesmere Island, Canada. We assembled a de novo GBS reference to call variants. Population structure, genetic diversity and demography were inferred from PCA, ADMIXTURE, fastsimcoal2, SplitsTree, and several population genomics statistics. ResultsPopulation structure analyses identified 4–5 clusters that align with geographic locations. Nucleotide diversity was highest in Beringia and decreased eastwards across Canada. Demographic coalescent analyses dated the following splits with Alaska: BC subspeciessaximontana(5 mya), Russia (~1.4 mya), Europe (>200–600 kya), and Greenland (~60 kya). Northern Canada populations appear to have formed during the current interglacial (7–9 kya). Admixture analyses show genetic variants from Alaska appear more frequently in present‐day than historic plants on Ellesmere Island. ConclusionsPopulation and demographic analyses support BC, Alaska, Russia, Europe and Greenland as all having had independent Pleistocene refugia. Northern Canadian populations appear to be founded during the current interglacial with genetic contributions from Alaska, Europe and Greenland. We found evidence, on Ellesmere Island, for continued recent gene flow in the last 250–500 years. These results suggest that a re‐analysis of other Arctic species with shallow population structure using higher resolution genomic markers and demographic analyses may help reveal deeper structure and other circumpolar glacial refugia.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
